In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
Wer hat schon zeit, sich über carnot gedanken zu machen, wenn gerade 500 milliarden zweckwiedrig in krumme geschäfts zu investieren sind?
-
Ein kühlturm kühlt kein flusswasser, weil das zu stark mit mineralien belastet ist
Es muss dazu extra aufbereitet (demineralisiert) werden. Das gute mühsam aufbereitet wasser wird deshalb nicht in den fluss gekippt, sondern soweit noch nicht im kühlturm verdunstet zurückgeführt in den kreislauf.@gafu @isotopp das ist in der Tat zutreffend. Das Wasser im Containment (absolut sauber) erhitzt im Dampferzeuger den Sekundärkreislauf welcher über die Turbine läuft und danach im Kondensator wieder verflüssigt und dann dem Dampferzeuger wieder zu geführt wird. Dieser Kondensator wird üblicherweise mit Oberflächenwasser gekühlt. Das erhitzte Wasser wird aber bevor es in den Fluss zurück gegeben wird, durch den Kühlturm geleitet wo der allergrößte Teil der Wärmeenergie in Dampfform abgegeben
-
@gafu @isotopp das ist in der Tat zutreffend. Das Wasser im Containment (absolut sauber) erhitzt im Dampferzeuger den Sekundärkreislauf welcher über die Turbine läuft und danach im Kondensator wieder verflüssigt und dann dem Dampferzeuger wieder zu geführt wird. Dieser Kondensator wird üblicherweise mit Oberflächenwasser gekühlt. Das erhitzte Wasser wird aber bevor es in den Fluss zurück gegeben wird, durch den Kühlturm geleitet wo der allergrößte Teil der Wärmeenergie in Dampfform abgegeben
@gafu @isotopp wird. Es ist also nicht zutreffend dass ein Kraftwerk mit 1 Gigawatt elektrischer Nennleistung (und vereinfacht gesprochen) 3 GW Heizleistung daher 2 GW in den Fluss abgibt. Aufgrund des Enthalpieverhältnisses ist es nur ein Bruchteil davon. Bei höherer Außentemperatur (Sommer) verachlechtert sich der Wirkungsgrad des Kühlturms daher nicht (wohl bei Trockenkühltürmen wie in Hamm am THR)
Das kann bei Niedrigwasser und im Sommer jedoch schon zu viel für das Ökosystem sein.
Was
-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp
so krass unwirtschaftlich ist ein AKW?!
⅔ GAU verhindern für ⅓ Leistung??
Fast wie eine Glühbirne!
(Sorry, ich musste unterbrechen, ich lese jetzt weiter.) -
@gafu @isotopp wird. Es ist also nicht zutreffend dass ein Kraftwerk mit 1 Gigawatt elektrischer Nennleistung (und vereinfacht gesprochen) 3 GW Heizleistung daher 2 GW in den Fluss abgibt. Aufgrund des Enthalpieverhältnisses ist es nur ein Bruchteil davon. Bei höherer Außentemperatur (Sommer) verachlechtert sich der Wirkungsgrad des Kühlturms daher nicht (wohl bei Trockenkühltürmen wie in Hamm am THR)
Das kann bei Niedrigwasser und im Sommer jedoch schon zu viel für das Ökosystem sein.
Was
-
@byggvir@nrw.social @isotopp@infosec.exchange
Bleibt nur zu hoffen, dass man bis dahin selbst die Radieschen von unten anschaut
️@crazy2bike @byggvir @isotopp ich möchte bitte Erdbeeren von unten anschauen, geht das?
Radieschen sind nur einjährig, Erdbeeren gestatten mir länger meine Ruhe.
Und blühen schöner. -
Fusionskraftwerke werden sich sicherlich niemals rechnen.
Deine Argumentation hat aber einen kleinen Haken: Das Problem mit der Kühlung ließe sich mittels Kühltürme angehen. Das macht es noch teurer, ist aber technisch möglich.
-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp Nunja, wir haben im Sommer auf dem Nachhauseweg von der Nordsee Windräder gezählt. Aus Interesse dann nach Windkraftanlagen gegoogelt und ein bisschen Kopfrechnen mit dem 12-jährigen geübt. Fazit von den Berechnungen: "Mama, wenn wir mit den 30.000 Windkrafträdern so viel Strom produzieren, wieso gibt es dann Leute, die behaupten, ohne AKWs geht es nicht?!" Ja, das ist sehr sehr einfach herunter gebrochen, aber irgendwie hat er Recht. Und ich bin neidisch mit meiner 11,5kWhP-PV.
🫣 -
@isotopp
so krass unwirtschaftlich ist ein AKW?!
⅔ GAU verhindern für ⅓ Leistung??
Fast wie eine Glühbirne!
(Sorry, ich musste unterbrechen, ich lese jetzt weiter.)@Bot_Anix Es ist ein Wasserkocher mit einer Dampfturbine. Ja.
-
@crazy2bike @byggvir @isotopp ich möchte bitte Erdbeeren von unten anschauen, geht das?
Radieschen sind nur einjährig, Erdbeeren gestatten mir länger meine Ruhe.
Und blühen schöner.@Bot_Anix@nrw.social @byggvir@nrw.social @isotopp@infosec.exchange
Wenn man die Radieschen nicht erntet, säen sie sich wieder aus.
Aber du kannst von unten anschauen, was auch immer du willst
-
Fusionskraftwerke werden sich sicherlich niemals rechnen.
Deine Argumentation hat aber einen kleinen Haken: Das Problem mit der Kühlung ließe sich mittels Kühltürme angehen. Das macht es noch teurer, ist aber technisch möglich.
-
B blue1337blood@nerdculture.de shared this topic
-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp "Trotz Jurastudium"





-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp
So gut ist deutscher Physikunterricht nicht...
Aber logisch erschließbar ist das meiste schon -
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp
Carnot ist Schulstoff? Ok, ich mag mich täuschen, ist lange her, aber ich glaube, ich hatte das erst im Studium. -
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp selbst, wenn man nicht diese Mathematik aufbringt, sollte man sie wenigstens nachvollziehen können - zumindest, wenn man ein Land regieren will.
Brauchen wir vielleicht eine Aufnahmeprüfung für den Bundestag?
Oder sind solche Fakten einfach nur egal, und es geht um etwas ganz anderes?
-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp Das Problem ist halt, dass Logik der Konservativen so nicht funktioniert. Du gehst jetzt hier von einer physikalischen Grenze aus und hälst es deshalb für nicht verhandelbar. Für Konservative ist die Grenze dagegen: "In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung."
Die kann man ja beide einfach ändern und Problem gelöst. Bürokratieabbau!
Es ist trotzdem eine schöne Argumentationshilfe für Leute, die sich ernsthaft mit Ideen austauschen wollen. Dankeschön!
-
@isotopp „In 2024, his 17,679-square-foot mansion near Dallas, which is a near-replica of the White House, was on sale for $40 million.“ Q: https://en.wikipedia.org/wiki/Toby_Neugebauer Reads like a sane person …
Und: Apfel<->Stamm: ‚According to a 2011 survey by the National Journal, Neugebauer was "the most conservative" member of the House.‘ Q: https://en.wikipedia.org/wiki/Randy_Neugebauer
-
Dieser Beitrag wurde gelöscht!
@energisch_ @isotopp muss er nicht, will er nicht. Zerstört seine Argumentation durch Fakten.
-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
@isotopp Es gibt unterschiedliche Möglichkeiten Abwärme loszuwerden. Geschlossene Kühlkreise sind möglich, kosten halt mehr in der Konstruktion und verbrauchen mehr Energie. Trockenkühltürme kombiniert mit Kühlteichen sind eine erprobte technische Lösung für Kühlung auch in heissen Gebieten.
-
In Deutschland gilt das Wasserhaushaltsgesetz und die Oberflächengewässerverordnung.
Ein Kraftwerk, das Kühlwasser in einen Fluß ausschüttet, ist auf 28ºC Flußwassertemperatur begrenzt (teilweise 25ºC), und auf eine maximale Erhöhung der Temperatur von 3º, kurzzeitig maximal und nur unter bestimmten Bedingungen 5º.
In Frankreich ist man ein wenig großzügiger beim Maximum, teilweise geht das bis 30ºC, aber die maximale Erwärmung ist stärker reglementiert, 1-3º, je nach Wassermenge. Das wiederum wird aufgeweicht bei Dürre, ausgerechnet, um die Stromversorgung des Landes sicherzustellen.
Warmes Wasser enthält weniger Sauerstoff, Fische sterben, Laichzyklen werden unterbrochen und es kommt zu Algenblüten, die beim Absterben dem Wasser noch mehr Sauerstoff entziehen. Ein warmer Fluß ist ein toter Fluß.
Ein AKW hat, wie jede Dampfmaschine, einen Wirkungsgrad von etwa 1/3, neue Designs marginal mehr – bis 38%. Wenn wir also einen Kraftwerksblock mit einer elektrischen Leistung von 1 GW hinstellen, dann müssen wir 2 GW weg kühlen.
Wenn ich das Abwasser also um 3º anwärmen darf, und ich 2 GW Wärmeleistung weg kühlen darf, dann brauche ich einen Wasserstrom von 159 m3 pro Sekunde. (2 Gigajoule/s und 4.18 kJ pro kg und Grad). Bei einem Limit von 1º sind es 478 m3/s.
Man kann sich als Faustregel merken, daß man ca. 500 m3/s Kühlwasser braucht pro 1 GW elektisch = 2 GW Abwärme, und das Wasser wird dann um ein Grad wärmer.
Der Rhein hat bei Karlsruhe ca. 1000-1200 m3/s bei normalem Wasserstand, bei Dürre sehr viel weniger. Die Loire im Sommer 200-400 m3/s. Der Neckar normal ca. 150 m3/s, die Isar 170 m3/s.
Also, falls jemand einen noch nicht existierenden Gigawatt-Fusionsreaktor irgendwo hin fantasieren möchte in der Klimakrise mit Sommerdürre: Geht mal Kühlwasser suchen.
Windkraftanlagen und Solarpanels machen Strom ohne Kühlung oder Kühlen sogar (den Boden unter Agri-PV), und sie machen die kWh zu weniger Kosten.
Ich weiß nicht, wo deutsche Politiker Physikunterricht gehabt haben. Die Grundlagen für so eine Rechnung kommen in Deutschland sehr früh an die Reihe, in der Sekundarstufe I (Klasse 7/8), also etwa Alter 12-14 Jahre: Temperatur und Wärme, spezifische Wärme, Erwärmen und Abkühlen von Wasser.
Kreisprozesse, Dampfmaschinen und Carnot-Wirkungsgrad kommen später, zum Teil erst in der Oberstufe, aber da dann auch in Grundkursen. Wer Physik abgibt, kriegt den Stoff trotzdem – in Chemie.
Die Mathemathik daran ist Multiplikation und Division, keine Differential- und Integralrechnung. Das kann man schaffen. Sogar trotz Jurastudium.
So lange Beiträge sollten nur geteasert werden und per Link auf eine Website führen.